4 research outputs found

    Implementation of the advanced encryption standard algorithm on an FPGA for image processing through the universal asynchronous receiver-transmitter protocol

    Get PDF
    Communication among end users can be based either on wired or wireless technology. Cryptography plays a vital role in ensuring data exchange is secure among end users. Data can be encrypted and decrypted using symmetric or asymmetric key cryptographic techniques to provide confidentiality. In wireless technology, images are exchanged through low-cost wireless peripheral devices, such as radio frequency identification device (RFID), nRF, and ZigBee, that can interface with field programmable gate array (FPGA) among the end users. One of the issues is that data exchange through wireless devices does not offer confidentiality, and subsequently, data can be lost. In this paper, we propose a design and implementation of AES-128 cipher algorithm on an FPGA board for image processing through the universal asynchronous receiver transmitter (UART) protocol. In this process, the advanced encryption standard (AES) algorithm is used to encrypt and decrypt the image, while the transmitter and receiver designs are implemented on two Xilinx BASYS-3 circuits connected with a ZigBee RF module. The encrypted image uses less memory, such as LUTs (141), and also consumes less chip power (0.0291 w), I/O (0.003), block RAM (0.001 w), data, and logic to provide much higher efficiency than wired communication technology. We also observe that images can be exchanged through the UART protocol with different baud rates in run time

    A Novel Hybrid Optimization With Ensemble Constraint Handling Approach for the Optimal Materialized Views

    Get PDF
    The datawarehouse is extremely challenging to work with, as doing so necessitates a significant investment of both time and space. As a result, it is essential to enable rapid data processing in order to cut down on the amount of time needed to respond to queries that are sent to the warehouse. To effectively solve this problem, one of the significant approaches that should be taken is to take the view of materialization. It is extremely unlikely that all of the views that can be derived from the data will ever be materialized. As a result, view subsets need to be selected intelligently in order to enable rapid data processing for queries coming from a variety of locations. The Materialized view selection problem is addressed by the model that has been proposed. The model is based on the ensemble constraint handling techniques (ECHT). In order to optimize the problem, we must take into account the constraints, which include the self-adaptive penalty, the Epsilon ()-parameter, and the stochastic ranking. For the purpose of making a quicker and more accurate selection of queries from the data warehouse, the proposed model includes the implementation of an innovative algorithm known as the constrained hybrid Ebola with COATI optimization (CHECO) algorithm. For the purpose of computing the best possible fitness, the goals of "processing cost of the query," "response cost," and "maintenance cost" are each defined. The top views are selected by the CHECO algorithm based on whether or not the defined fitness requirements are met. In the final step of the process, the proposed model is compared to the models already in use in order to validate the performance improvement in terms of a variety of performance metrics

    Predictive analytics of heart disease presence with feature importance based on machine learning algorithms

    No full text
    Heart failure disease is a complex clinical issue which has more impact on life of human begins. Hospitals and cardiac centers frequently employ electrocardiogram (ECG)tool to assess and to identify heart failure at early stages. Healthcare professionals are very concerned about the early identification of heart disease. In this research paper we have focused on predictive analysis of cardiac disease by using machine learning algorithms. We have developed python-based software for healthcare research in this paper. This research has more significant work for tracking and establishing numerous health monitoring apps. We have demonstrated information handling that requires adjusting clear-cut portions and working with absolute factors. A quick overview of the various machine learning technologies based on heart disease diagnosis is described clearly in this research. A more reliable way for diagnosing cardiac problems is the random forest(RF)classification algorithm. This application needs data analysis, which is crucial owing to its about 95% accuracy rate across training data.We have discussed the tests and findings of the RFclassifier method, which improves the accuracy of heart disease research diagnosis
    corecore